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Development of a Simple Model for the
Prediction of Tie-Lines for Ternary Systems

Thella Prathap Kumar and Parichay K. Das
Chemical Engineering Sciences, Indian Institute of Chemical Technology,
Hyderabad, India

Abstract: A novel, semi-analytic, and numerically convenient algorithm has been
proposed for predicting the equilibrium tie-line composition with the given over-
all feed composition and binary interaction parameters of established models
(UNIQUAC and modified UNIQUAC) for ternary liquid-liquid systems. The
merit of the proposed model rests on the selection of the distribution coefficient
of each component as unknown variables instead of the mole fraction. Moreover,
the model relies on the analytical solution of the extract fraction instead of adopt-
ing any numerical schemes that are commonly practiced to solve the same. Its
veracity has been successfully tested with the experimental results for standard
ternary systems reported in literature. The calculation procedure renders a dis-
tinct advantage over the accepted existing methods from the utilitarian view
point.

Keywords: Interaction parameters, liquid-liquid equilibria, model, ternary
system, tie-line

INTRODUCTION

Liquid-liquid extraction, though compared to distillation, a fairly recent
phenomenon as a means of separation, has found acceptance rather in
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electric rapidity. The primary reasons for which the extraction enjoys
such a phenomenal growth may be attributed to the practical difficulties
encountered in separating azeotropic or close-boiling liquid mixtures by
conventional distillation. Excellent reviews on the industrial applications
of extraction are discussed in literature (1-4). The calculation of isother-
mal ternary liquid-liquid equilibrium (LLE) compositions constitutes
probably the most important prerequisite in the modelling and design
of the stage-wise or agitated extractors. There is always a need for precise
LLE data in order to design an efficient extractor. Detailed exposition of
the experimental procedures and related theory on liquid-liquid extrac-
tion is delineated by Alders (5). For a ternary liquid-liquid system, the
equilibrium tie-line composition can be calculated, for a given overall
feed composition and interaction parameters of the model equation that
determine the activity coefficients, in the same way as in the vapor-liquid
equilibrium flash separation calculation solved by using the popular
Rachford and Rice method (6). The pioneering procedure described by
Prausnitz et al. (7) for calculating the LLE of the multi-component sys-
tems involves solving the equations that equate the activities (having
advantages over the chemical potential that fugacities can be related to
measurable properties) of the components at phase equilibria. The
unknown variables of interest associated with this method are the mole
fractions of the components in each phase. This method is widely
accepted. Ammar and Renon (8) proposed a highly rigorous method,
for isothermal phase split calculations based on the minimization of
Gibbs free energy of mixing.

In this communication, we have developed a novel, albeit simple
semi-analytic method for calculating LLE tie-line composition for tern-
ary systems by solving the fugacities equations where the distribution
coefficients (K;s) are unknown variables of interest instead of the mole
fractions of the components. The selection of K;s as unknown vari-
ables has made the model novel and unique. Their rewarding influence
on the proposed model as well as the additional computational edge in
solving the extract fraction, will be discussed in the ensuing section.
Since only ternary systems are considered here, the components are
designated according to their function. The component 1 stands for
the solvent that generally extracts the solute from the diluent, the com-
ponent 2 denotes the diluent and the 3" component is designated as
the solute that is initially dissolved in the diluent. A ternary system
is called the Type I system, if the solute is completely soluble in both
the diluent and the solvent, but the solvent and the diluent are either
partially miscible or completely immiscible. The Type II system gets
its name when the solute is partially soluble in either the solvent or
the diluent.
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THE MODEL
Material Balance and Phase Equilibria Equations
The overall material balance equation is given by,
F=E+R (1)

where F is the molar feed, and E and R are the respective extract and the
raffinate phases in moles.
The overall component mole balance yields,

Fz; = ExF + RxR (2)

where z; is the mole fraction of i’component in the feed with 37 |z, = I,
and xF and xR represent the equilibrium mole fractions of i component
in extract (E) and raffinate (R) phases respectively.
The above two equations produce,
zi = axF + (1 — a)xk (3)
where o (=E/F) and (1 — o) (=R/F) represent the fraction of feed in the

extract and the raffinate phases respectively.
The phase equilibria equations are,

xFyF = xfyR (4)

where yE and yR are the respective activity coefficients for i component
in extract (E) and raffinate (R) phases.
The distribution coefficient of the i component, K;, between the £

and R phases is given by,
R E
Vi Xi
k= (=) ®
1

Xi

and the material balance constraint for each component in each phase
reads,

3 3
fo:leRzl (6)
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From Eqgs. (3), (4), and (5), we obtain,

£ z;K;

T K -+ @
R _ Zi

Tk -+ 1 ®)

and combining Egs. (6), (7), and (8), yields,

3
1o =Y = ©)

The central idea that led to this work is embedded into Eq. (9). For a given
set of thermodynamic variables Ks (0 < K; < oco) and the material vari-
ables z;5 (0 < z; < 1), Eq. (9), a mathematically obedient equation, can be
solved for a. If we examine carefully the Eq. (9), we observe that z;s are
fixed as dictated by the feed concentration but Ks are to be determined
from the Eq. (5). Needless to say, the Eq. (9) has a unique solution because

2

3 Zl'(Kl‘—l)
T

i1 (a(K; —

However, for estimating the physically admissible root (0 <o < 1) from
the Eq. (9), the following inequalities must be observed.

f(O() >0$23:Ki2,'> 1 (10)

i=1

and
3

f(a)<0:>2%>1 (11)
i=1 4

Equation (9) demands a numerical procedure to solve. However, it can be
expressed in the following ratio of functions

Floy =52 (12

where g(«) = ao” + o+ ¢ and h(a) = Hf;l [2(K; — 1) + 1] with

3
(Ki—1) (13)

i
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b:(Kl - 1)(K2 - 1)(21 —|—22)
+ (Ky = 1)(K3 — 1)(z2 + z3) (14)
+ (K3 = 1)(Ki — 1)(z3 + 21)

3
C:HK,-zi—l (15)
i=1

The zeros of f{e) can now be evaluated analytically by solving
gla) =ao’® +boa+c=0 (16)

This procedure possesses a perceptible numerical advantage. The two
roots, «; and oy, for Eq. (16) are given by,

o = (17)

ISIEN

Oy =

(18)

ES RS

where ¢ is computed as
1
q=-3 [b + sgn(b)Vh? — dac
If we take care of the following constraints

g(0)=¢>0(<0) (19)
and

gl)=a+b+c<0(>0) (20)

one root would always lie between 0 and 1. The other root takes values
either greater than unity (¢ > 1) or less than zero (o <0). These values
when construed physically, imply that the z; refuses to split into phases.
While examining the expression /(a), we find that the /(o) never becomes
zero for 0 <o <1, thus removing the possibility of the ratio as shown in
Eq. (12) to become indeterminate. In fact, 2(0)=1 and A(1)=K;K>K;
ensure that A(x) is always positive for K;s greater than zero. So, the
procedure of solving g(«) establishes an additional beneficial characteristic
of the model on numerical aspect.

In the widely used method, described by Prausnitz et al. (7), the
algorithm starts with an initial guess, designated as old values, of compo-
sition of components, xfs and xRs. These compositions are used to
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obtain values of y£s, and yRs using the model equation and these in turn
are utilized to estimate K;s from Eq. (5). With these values of Kjs, o is
solved from Eq. (9) numerically where the rate of convergence depends
upon the initial guess of a. Using the freshly calculated value of « and
the K;s already computed, the new values of the xFs and xXs are deter-
mined from Egs. (7) and (8) respectively. If the deviation, |[x"®" — x94|,
in each phase is less than the prescribed tolerance, ¢ (say order of
10~%), the new values of the compositions are the desired solutions, other-
wise the entire loop of computation is repeated replacing the old values
by the new values of the compositions until the prescribed tolerance is
achieved. Indeed, the convergence rate depends upon the initial estimates
of the compositions used.

In the present work, we rely on evaluating o analytically from Eq. (16) in
the first step itself, with guessed values of Kjs that are considered initially to
be unknown parameters of interest for the theoretical determination of the
tie-line composition. Such reliance stems from the utilitarian compromise.

It is a common practice in the engineering community not only to
select a solvent (forming the extract phase (F)) that shows more affinity
to the solute than the diluent (constituting the Raffinate phase (R)) but
also to ensure that the solvent and the diluent should be scarcely soluble,
though the mutual solubility increases with the addition of the solute till
they become a single phase at the plait point. So, K; will always be greater
than unity (K;>1) and evidently, K, will always be less than unity
(K> < 1). At the plait point, each K; becomes equal to unity. So, the pos-
sible values of K;s that can be considered are given as

K1>1,K2<1&K3>1 (Cl)

Choice of Initial Guess for K;, K,, and K3

Since the initial guess of the K;s demands not only their numerical values
to be in the range as described by (C1) but also fulfilling the conditions
(19) and (20), we have resorted to the following choice,

1

K =K;=— (> 1)

73
where z;3 is the given composition of the solute in the feed. With the above
selection of K; and K, the condition (19) is satisfied and the maximum
value of K, can be easily evaluated by solving a + b + ¢ =0, and is given by,

K;nax _ 1— (Zl +Z3)

o 1 —z3(z1 + z3) (21)
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which is always positive and less than unity. So, the chosen value of K,
must be less than the right hand side value of Eq. (21) respecting the
condition (20). The other choices for the initial guess of K; and K3, as furn-
ished in (C1), are equally recommended, and K, can be determined from
the condition (20). Indeed, the rate of convergence to the solution can be
improved by judiciously guessing the initial values of K;s.

Once this initial guess is fixed, not only the inequality a + b+ ¢ <0 is
maintained during the entire course of the computation of « but also the
values of Kjs that are guided by thermodynamical variables, y;s, would
also remain in the prescribed range displayed in (C1). The analytical
determination of o, needless to say, alleviates the computational expendi-
ture arising out while calculating the same numerically.

If the inequality constraints given in (C1) are reversed, the root o that
lies between 0 and unity, will be replaced by 1 — «. This intuitively certain
result not only can be proved mathematically but also is the direct con-
sequence of Eq. (1). This implies that the diluent will become the solvent
and the solvent the diluent, and accordingly the solute distributes itself to
the extract and raffinate phases. The identification of the problem is com-
plete at this stage. The final values of the K;s would be the reciprocals of
their counterparts that could have been obtained with the selected values
of K;s complying the conditions displayed in (C1).

In order to predict the binary equilibrium data for the solvent (1) and
diluent (2), the same procedure can be applied by assigning K;=1 and
z3=0 with constraint z;+z,=1. These restrictions renders a=0,
b=(K; —1)(K,—1) and ¢=K;z; + K>z, — 1. The relation for « can be
solved directly from bx+c=0 and the solution is given by o= —c/b.
The minus sign again demands that either of K; and K, must be less
than unity. As regard to observing the condition ¢ >0 and b+ ¢ <0 as
in the case of the ternary equilibrium line prediction, the initial choice
of K, is estimated by assigning K;=1/z; (>1) as initial guess, as

max __ _ 1
K2 14z

Model Equation for Activity Coefficients

The activity coefficients, y;s, (the measure of non-ideality of the liquid
mixtures) are related to the molar excess Gibbs energy which is a function
of temperature, pressure, and composition of the components. Several
models like UNIQUAC, modified UNIQUAC, NRTL etc. that account
for the energy interaction between the liquid molecules are available in
literature (9—11) which can be used for the theoretical estimation of y;s.
Since one of the key purposes of this work is to test our computational
algorithm with the established systems (14-18), we have chosen the same
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UNIQUAC and modified UNIQUAC model equations (10) for a
multi-component mixture as used by Prausnitz et al. (7,13).

For the i”component, the activity coefficient given by modified
UNIQUAC model equation (10) is,

Iny; =1n in +1n le (22)

c_ ¢ (Z 0i i o
In p; —lnx—-i-(z) 1—+1— Zx] (23)

i

/
Noo ‘L',/

N
Iny;’ = —gjIn (Z 0}f_ﬁ> +4;— 4 Z (24)
j Zk ki

where
7= Z;i/);;??f >
"= Zf;;x/ (26)
=2 (-4)~ (1) (28)

where 7€ is the combinatorial part, yR is the residual part, Z is the lattice
coordination number which is set equal to 10, ¢ is the segment fraction, 0
and 0’ are the area fractions, r; or r; is the relative van der Waals volume
per molecule, and ¢; or ¢; and ¢; or ¢; are the relative surface areas per
molecule. For the simple UNIQUAC model equation, ¢; and ¢ are equal.

Computational Algorithm

1. Specifying feed composition: Assign the feed composition z;s as input
ensuring that 37} z; = 1.

2. Initialization: Select the initial guess for K, K$ and K{M. Set
K9 = K¢l = L and choose K§M < K", given by Eq. (21).

3. Solvmg Eq (16) analytically: Solve for o from Eq. (16) and accept the
root that lies between 0 and unity.

4. Estimation of component compositions in £ and R phases: Calculate
x£ and x® from Eq. (7) and (8) respectively.
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Table 1. UNIQUAC and Modified UNIQUAC binary interaction parameters

for components (12,17,18)

T an az;g ajs asg azs asz

System O K & K K K (K
Modified UNIQUAC Parameters
n-Heptane (1) 45 54571 23.71 24542 —13593 60.28  89.57
Acetonitrile (2)
Benzene (3)
Acrylonitrile (1) 60 471.21 155.78 183.65 —142.35 122.02 122.07
Water (2)
Acetonitrile (3)
2,2 4-Trimethylpentane (1) 25 410.08 —4.98 8091 -27.13 71.00 12.00
Furfural (2)
Benzene (3)
UNIQUAC Parameters
Water (1) 25 91.88 404.83 353.18 —171.90 357.47 —201.58
Methyl Isobutyl

Ketone (2)
Propanoic acid (3)
Water (1) 25 220.86 228.75 —42.38 384.16 152.13 —46.41

2-Ethyl-1-Hexanol (2)
Acetone (3)

5. Calculation of activity coefficients: Compute yEs and yRs from

UNIQUAC model Eq. (22).

6. Updating distribution coefficients: Evaluate K"s from Eq. (5).

Table 2. UNIQUAC structural parameters for components (7,10)

Component r q q

n-Heptane 5.170 4.400 4.400
Benzene 3.190 2.400 2.400
Acetonitrile 1.870 1.720 1.720
Acrylonitrile 2.310 2.050 2.050
Water 0.920 1.400 1.000
2,2,4-Trimethyl Pentane 5.850 4,940 4,940
Furfural 3.168 2.484 2.484
Propanoic acid 2.877 2.612 2.612
Methyl Isobutyl Ketone 4.596 3.952 3.952
Acetone 2.570 2.340 2.340

2-Ethyl-1-Hexanol 6.151 5.208
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_ o KoK _
7. Deviation test: Compare K{s and K/"s. If |=—=z—| < &(107%) for

all the three components, the output is the final result and the pro-

gram is terminated otherwise execute step 8.
8. Iteration: Replace K?“s by K""s and repeat from step 3.

ILLUSTRATIVE EXAMPLES

Several reported Type I systems (14-18), that are considered to be the
benchmark systems, were used in the present work for estimating the tie-
line compositions to check the efficiency of the present algorithm. The
values of UNIQUAC and modified UNIQUAC binary interaction para-
meters between the components, and their structural parameters are given
in Tables 1 and 2 respectively. The set of values that contain the extract
fraction (x) and tie-line compositions (x;s) which have been predicted by
the present method, is listed in Table 3 along with the experimental data.
The results clearly demonstrate that the present algorithm reproduces the
experimental data very well for a given set of binary interaction parameters.

CONCLUSION

A simple generalized method for predicting tie-line composition has been
developed with given overall feed composition and binary interaction para-
meters. The algorithm uses distribution coefficients, K;s, as the unknown
variables of interest. The analytical determination of « lends a perceptible
advantage over the current accepted methods in terms of plausible algo-
rithm stability and computational cost. The veracity of the model has been
tested for UNIQUAC and modified UNIQUAC model equations against
the reported Type I systems. The model is applicable with the same capa-
city to predict the ternary equilibrium composition for the Type II systems.
We are hopeful that the new algorithm for predicting the tie-line composi-
tion of ternary systems would be useful in the design of extractors.
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